
Interoperable Tools for Advanced
Petascale Simulations (ITAPS)

Tutorial Overview Presentation

August 2010

LLNL-PRES-407129

Introduction

3

Unstructured meshes

Geometric domain

Mesh

• An unstructured mesh
– A piece-wise space/time domain

decomposition over which the
simulation is to be run

– General topology-based mesh
representation consists of
• 0-3 D topological entities (vertices,

edges, faces and regions)
• Connectivity between entities called

adjacencies
– Mesh data structure provide services

to create and/or use the mesh data

4

Unstructured mesh methods are
commonly used for numerical simulation

• Some Advantages
– Meshes of mixed topologies and order easy
– Mesh adaptation can account for curved

domains
– General mesh anisotropy can be obtained
– Easy to create strong mesh gradations without

special numerical techniques
– Alignment with multiple curved geometric

features
• Some Disadvantages

– Data structures larger and more complex
– Solution algorithms can be more complex

5

• Typically the mesh is distributed over independent
memories

• A mesh partition groups mesh entities and places
them into parts

• Applications using a partitioned mesh need
– Communication links for between “shared”

mesh entities on neighboring parts
– Ability to move mesh entities between

parts (while maintaining links)
– Algorithms to maintain load balance of

parts which minimizing communications

Unstructured Meshes on Parallel
Computers

iM0

 partition
boundary

Mj

P0

P1

P2

6

Distributed mesh representations have
several functional requirements
• Entity ownership

– Each mesh entity is owned by
exactly one part

– Ownership imbues right to modify
– Ownership is not static during the

course of a simulation
• Repartitioning
• Local micro-migration

– Some entities have read-only copies on other parts (e.g.
along part boundaries and ghosts)

• Communication links
– Efficient mechanisms to update mesh partitioning and

keep the links between parts are mandatory

7

Key issues that must be addressed for
parallel computation

• Scalability
– Load balance as the mesh changes
– Low communication overhead costs
– Efficient use of distributed memory

• Function
– Consistent, correct mesh operations
– Management of complex communication

schedules

• Performance
– Near optimal serial efficiency on each processor
– Minimal overhead when using general tools relative

to native implementations

8

Basic parallel solution on unstructured
meshes has several key steps

Construct the initial mesh (serial or parallel)
Improve the mesh using smoothing and swapping
If necessary, (re)partition the mesh across processors
Solve the PDE on mesh and estimate the error
While error > tolerance
 Refine, coarsen, improve and repartition the mesh
 Solve the PDE on the mesh and estimate the error
End

CAD Meshing Partitioning

h-Refinement

Solvers Refinement

Omega3P

S3P

T3P

Tau3P

Shape Optimization

9

Parallel solution is further complicated
by the needs of advanced simulations

Examples:
– Design optimization requires geometry

modification, remeshing, derivative
computations

– Multi-physics applications require mesh
to mesh transfer, interpolation methods,
sophisticated adaptive methods

bl
al a1 a2

b1

ar
br

b

ra1 ra2

zcl zcrzcbzcc

zcll

10

• CAD interaction: CGM
• Mesh generation: GRUMMP, NWGrid
• Mesh databases: FMDB, MOAB
• Mesh improvement: Mesquite, swapping tools
• Parallel Adaptive loops: FMDB, NWGrid, MeshAdapt
• Front tracking: Frontier
• Partitioning: Zoltan

The ITAPS team has developed tools to
address these needs

11

The ITAPS center is developing key technologies to
ease the use of advanced meshing tools on large-

scale parallel computers

While these tools exist, significant
challenges remain

Developing and using these technologies requires
significant software expertise from application scientists

• Difficult to improve existing codes
• Difficult to design and implement new codes

These tools all meet particular needs, but
• They do not interoperate to form high level services
• They cannot be easily interchanged in an application

12

ITAPS uses a component-based
approach to address these challenges

• Develop and deploy key mesh, geometry and field
manipulation component services needed for petascale
computing applications

• Develop advanced functionality integrated services to
support SciDAC application needs
– Combine component services together
– Unify tools with common interfaces and data model to

enable interoperability
– Interfaces are implemented on top of existing mesh

databases
• Work with key application teams to insert ITAPS

technologies into simulations Common
Interfaces

Component
Services

Petascale
Integrated

Tools

Build on

Are unified
by

13

ITAPS produces mesh services that
meet application needs

Mesh Geometry Relations FieldCommon
Interfaces

Component
Tools

Are unified
by

Petascale
Integrated

Tools

Build on

MeshFront Mesh InterpolationSwapping Dynamic Geom/Mesh

AMR
Front tracking

Shape
Optimization

Solution
Adaptive

Solution
Transfer

Petascale
Mesh

N

α

α

β

α α

P

P

P

P P Pβ P

β α

Fusion

Nuclear energy
Groundwater

Accelerator

to… GRUMMP MOAB FMDB NWGrid CGM Lasso

14

Applications can access ITAPS
services in two ways

• Implement ITAPS interfaces on top of application data
structures

• Use a reference implementation of the interfaces to provide
access to ITAPS services at the cost of a data copy

Interface

Component
Service 3

High Level
Integrated Service

Application w/
Own Data Component

Service 2

Component
Service 1

Application using
ITAPS Implementation

Interface

ITAPS Implementation

Component
Service 3

High Level
Integrated Service Component

Service 2

Successful development of applications has
been accelerated by close collaboration.

15

There are several advantages of the
component-based approach ITAPS uses

• Focus on interfaces not on data structures or
file formats

• Use independent interfaces for distinct data
model abstractions to make adoption easier

• Incremental adoption for applications; only
service dependent interfaces need to
implemented

• Finer granularity of interoperable functionality
reduces the need to mix huge libraries
together

ITAPS Data Model

17

The ITAPS interoperability goal requires
abstracting the data model

• The data model must encompass a
broad spectrum of mesh types and
usage scenarios

• A set of common interfaces
– Implementation and data

structure neutral
– Small enough to encourage

adoption
– Flexible enough to support a

broad range of functionality

• Information flows from geometrical
representation of the domain to the
mesh to the solvers and post-
processing tools

• Adaptive loops and design
optimization requires a loop

CAD Meshing Partitioning

h-Refinement

Solvers Refinement

Omega3P

S3P

T3P

Tau3P

Shape Optimization

18

The ITAPS data model abstracts
PDE-simulation data hierarchy

• Core Data Types
– Geometric Data: provides a high level description of the boundaries

of the computational domain; e.g., CAD, image, or mesh data
(iGeom)

– Mesh Data: provides the geometric and topological information
associated with the discrete representation of the domain (iMesh)

– Field Data: provides access to time dependent physics variables
associated with application solution. These can be scalars, vectors,
tensors, and associated with any mesh entity. (iField)

• Data Relation Managers (iRel)
– Provides control of the relationships among the core data types
– Resolves cross references between entities in different groups
– Provides functionality that depends on multiple core data types

19

The ITAPS data model has four
fundamental “types”

• Entity: fine-grained entities in interface (e.g.,
vertex, face, region)

• Entity Set: arbitrary collection of entities &
other sets
– Parent/child relations, for embedded graphs

between sets
• Interface Instance: object on which interface

functions are called and through which other
data are obtained

• Tag: named datum annotated to Entities and
Entity Sets

20

These core data types blend abstract
and specific concepts

• Entity Definition
– Unique type and topology
– Canonical ordering defines adjacency

relationships
• Entity Set Definition

– Arbitrary grouping of ITAPS entities and
other sets

– There is a single “Root Set”
– Relationships among entity sets

• Contained-in
• Hierarchical

• These objects are accessed using
opaque (type-less) “handles”

21

iMesh(P) provides access to the
discrete representation of the domain

• iMesh supports local access to the mesh
• iMeshP complements iMesh with parallel

support
• Must support

– Access to mesh geometry and topology
– User-defined mesh manipulation and adaptivity
– Grouping of related mesh entities together (e.g. for

boundary conditions)
• Builds on a general data model that is largely

suited for unstructured grids
• Implemented using a variety of mesh types,

software, and for a number of different usage
scenarios

22

The iMesh interface supports basic
and advanced local operations
• Provides basic access to vertex coordinates and

adjacency information
– Mesh loading and saving
– Global information such as the root set, geometric

dimension, number of entities of a given type or topology
– Access to all entities in a set as single entities, arrays of

entities, or entire set
– Set/remove/access tag data

• Set functionality
– Boolean operations (union, subtract, intersect)
– Hierarchical relationships

• Mesh modification
– Adding / Deleting entities
– Vertex relocation
– No validity checks

23

iMeshP extends iMesh to support
parallel computations

• Focus on distributed memory
– For example: use application's

MPI communicators
– But allow use of global address

space and shared memory
paradigms

• Leverage serial iMesh
– Works as expected within a

process
– Works as expected for global

address space and shared
memory programs

24

The iMeshP parallel interface defines
a partition model

• Process: a program executing;
MPI process
– # of processes == MPI_Comm_size
– Process number == MPI_Comm_rank

• iMesh instance: mesh database
provided by an implementation
– One or more instances per process

• Partition: describes a parallel
mesh
– Maps entities to subsets called parts
– Maps parts to processes
– Has a communicator associated with it

25

The Partition Model

• Ownership: right to modify an entity
• Internal entity: Owned entity not on

an interpart boundary.
– E.g., all triangles w/ same color as

iMesh label for part
• Part-Boundary entity: Entity on an

interpart boundary
– E.g., bold edges
– Shared between parts (owner indicated

by color; other parts have copies).
• Ghost entity: Non-owned, non-part-

boundary entity in a part
– E.g., triangles whose color is different from iMesh label
– Needed for adjacency and/or solution data

• Copies: ghost entities + non-owned part-boundary entities.

26

Partition Characteristics

• Maps entities to parts
– Part assignments computed with respect to a set of

entities
– Computed assignments induce part assignments

for adjacent entities
• Maps parts to processes

– Each process may have one or more parts
– Each part is wholly contained within a process

• Has a communicator associated with it
– “Global” operations performed with respect to data

in all parts in a partition’s communicator
– “Local” operations performed with respect to either

a part’s or process’ data

27

The geometry interface provides
access to the computational domain

• Must support
– automatic mesh generation
– mesh adaptation
– tracking domain changes
– relating information between

alternative discretizations
• Builds on boundary

representations of geometry

• Used to support various underlying representations
– Commercial modelers (e.g., Parasolid, ACIS)
– Modelers that operate from standard files (e.g. IGES, STEP)
– Models constructed from an input mesh

28

Basic and advanced functionalities
are supported in the geometry interface

• Model loading and initiation
• Topological queries of entities and

adjacencies
• Pointwise geometric shape

interrogation
• Parametric coordinate systems
• Model topology modification

iRel Relations interface enables other
ITAPS interfaces to work together
• Relates entities between two interfaces without

adding dependencies between them. E.g.,
– Relate entities in iMesh to entities iGeom.
– Generation of spectral element points on curved

geometry.
• Relationships supported:

• Implementation available in Lasso.
– Reference implementation that all services/

implementations can use to manage relationships.

Entity Entity Entity Set

Set Entity

Entity Entity

Set

29

30

Summary of the ITAPS data model

• The data model abstracts the information flow
in PDE simulations: Geometry, Mesh, Fields
and their Relations

• Each core abstraction has a separate
interface definition: iMesh, iGeom, iField, iRel

• The core building blocks of the data models
are entities, entity sets, interfaces and tags

• The parallel data model defines partitions,
parts, and entity ownership concepts

Basic ITAPS Interfaces

32

ITAPS interfaces are designed for
interoperability

iMesh
(C)

implA.CC

app1.f77 app2.f90 app3.CC app4.c

implB.c implC.f77

Babel

Server
f77 client

Python client
Java client

app1.f77

app2.py

app3.java

• Interoperability across language,
application, implementation

• Multiple call paths to the same
implementation

• Efficiency preserved using
direct, C-based interface

33

Example enumerated types used in
the ITAPS interface

• Important enumerated types:
– EntityType (iBase_VERTEX, EDGE, FACE, REGION)
– EntityTopology (iMesh_POINT, LINE, TRI, QUAD, ...)
– StorageOrder (iBase_BLOCKED, INTERLEAVED)
– TagDataType (iBase_INTEGER, DOUBLE,

ENTITY_HANDLE)
– ErrorType (iBase_SUCCESS, FAILURE, ...)

• Enumerated type & function names both have
iBase, iMesh, iGeom, other names prepended

34

Simple Example: HELLO iMesh

 Simple application that
 1) Instantiates iMesh interface
 2) Reads mesh from disk
 3) Reports # entities of each

dimension

#include "iMesh.h"
int main(int argc, char *argv[]){
 char *options = NULL;
 int ierr, dim, num, options_len = 0;
 iMesh_Instance mesh;
 iBase_EntitySetHandle root;

 /* create the Mesh instance */
 iMesh_newMesh(options, &mesh, &ierr, options_len);
 iMesh_getRootSet(mesh, &root, &ierr);

 /* load the mesh */
 iMesh_load(mesh, root, argv[1], options, &ierr,
 strlen(argv[1]), options_len);

 /* report the number of elements of each dimension */
 for (dim = iBase_VERTEX; dim <= iBase_REGION; dim++) {
 iMesh_getNumOfType(mesh, root, dim, &num, &ierr);
 printf("Number of %d-D elements = %d\n", dim, num);
 }
 iMesh_dtor(mesh, &ierr);
 return 1;
}

1

2

3

Note: for brevity, there’s no error checking here,
but there should be in your code!!!

Revised 11/08

35

Simple Example: HELLO iMeshP
#include "iMesh.h"
#include "iMeshP.h"
#include <mpi.h>
int main(int argc, char *argv[]) {
 char *options = NULL;
 iMesh_Instance mesh;
 iMeshP_PartitionHandle partition;
 int me, dim, num, ierr, options_len=0;
 iBase_EntitySetHandle root;
 /* create the Mesh instance */
 iMesh_newMesh(options, &mesh, &ierr, options_len);
 iMesh_getRootSet(mesh, &root, &ierr);

 MPI_Init(&argc, &argv);
 MPI_Comm_rank(MPI_COMM_WORLD, &me);
 /* Create the partition. */
 iMeshP_createPartitionAll(mesh, MPI_COMM_WORLD, &partition, &ierr);

 /* load the mesh */
 iMeshP_loadAll(mesh, partition, root, argv[1], options, &ierr,
 strlen(argv[1]), options_len);

 /* Report number of Parts in Partition */
 iMeshP_getNumLocalParts(mesh, partition, &num, &ierr);
 printf("%d Number of Parts = %d\n", me, num);
. . .

1

2

3

 Parallel Version: HELLO iMeshP
 1) Instantiates Partition
 2) Reads mesh into mesh

instance and Partition
 3) Reports # parts in Partition

Revised 11/08

36

Interface implementations are well
underway
• iMesh 1.0 Interface complete
• iMeshP 0.5 specified and alpha implementations

underway
• iGeom and iRel 1.0 interfaces complete
• Implementations

– iMesh: FMDB, GRUMMP, NWGrid, MOAB
– iMeshP: FMDB, MOAB
– iGeom: CGM (Acis, OpenCasCade)
– iRel: Lasso

• Interfaces have been used to build services and
test interoperability

• Analyzing performance when using interface

Four ITAPS mesh components provide
iMesh(P) functionality

iMesh Implementation Emphasis Parallel Capability Applications

FMDB: Flexible Mesh
DataBase

Entity addition/removal
for adaptation

Scalable to at least 32K
procs, 1B elements;
uses iZoltan.

fusion, accelerators, CFD,
solid mechanics,
multiphase flow

MOAB: Mesh Oriented
dAtaBase

Low memory usage first,
then CPU time.

Up to 64 procs with
flexible mesh loading
based on geometric
volume, material,
partition

nuclear reactors,
accelerators, radiation
transport, inertial
confinement fusion,
glacier dynamics

GRUMMP: Generation &
Refinement of Mixed-
element Meshes in Parallel

Fast adjacency retrieval
for mesh generation,
improvement and
adaptation.

In development. CFD, biological systems,
structural mechanics

NWGrid: NorthWest Grid
Generation Code

Simplicial meshes;
parallel generation of
unstructured, hybrid,
adaptive meshes.

Parallelism based on
Global Arrays.

CFD, subsurface
transport

37

iGeom implementations provide
geometric model data

iGeom Implementation Capabilities Applications

CGM: Common
Geometry Module

Supports ACIS,
Open.Cascade, facet-
based engines;
Derived from geometry
library in CUBIT.

nuclear reactor
modeling, accelerator
modeling, radiation
transport

SGModel: SCOREC
Geometric Model

Supports CAD system
kernels (ParaSolid,
ACIS) and mesh-based
geometry.

MeshAdapt service,
accelerator modeling,
fusion, solid mechanics,
multiphase flow.

38

39

Performance
• Large applications balance memory and cpu time performance
• Implementations of iMesh vary on speed vs. memory performance

– Create, v-E, E-v query, square all-hex mesh
– Entity- vs. Array-based access

• Compare iMesh (C, SIDL), Native (MOAB), Native Scd (MOAB), CUBIT
– Ent-, Arr-based access
– All-hexahedral square structured mesh

Native Scd

C Ent

CUBIT
SIDL Ent
SIDL Arr
C Arr

Native Ent
Native Arr

C Ent

SIDL Ent

C Arr
Native Scd
Native Ent
Native Arr
CUBIT

40

Performance in building a finite
element stiffness matrix

• Set up a simple stiffness matrix for
a 2D diffusion equation

• Examine costs of entity access via
native data structures, arrays,
entity iterators and workset
iterators

• Arrays minimize time overhead but
require a data copy

• Entity iterators are straightforward
to program, minimize memory
overhead, but maximize time cost

• Entity array iterators balance time/
memory tradeoffs but are the most
difficult to program

∇2u = f

u(x=0)=1 u(x=1) = 1

uy(x=0, x=1) = 0

An Overview of ITAPS Services

42

Interoperable services speed the
development of simulation technologies

• ITAPS provides stand-alone services as libraries
• Improve applications’ ability to leverage advanced

tools
– Mesh quality improvement
– Mesh adaptation loops
– Mesh partitioning
– Front tracking
– Visualization
– Mesh I/O

I’ll provide a brief overview of
each of these tools; more
information can be found on
www.itaps-scidac.org

43

Improved
mesh

Unstructured mesh quality is a critical
factor in solution efficiency and accuracy

• In general, mesh size and quality affects
– Solution efficiency (e.g. Axelsson, 1976; Fried

1972; Axelsson and Barker, 1984)
• Iterations grow as a function of N
• Iterations grow as a function of minimum angle

– Solution accuracy
• Solution from iterative solver is less accurate
• For isotropic fields, discretization error adversely

affected by distorted elements (e.g. Babuska
and Aziz, 1976)

• Understanding application solution
characteristics is critical
– stretched elements are more accurate than

equilateral elements for boundary layer flow

Node Movement

Moving grid points without
changing mesh topology

There are three primary techniques for
improving the quality of existing meshes

e
f

e

f

e

f

Edge or Face Flipping

Modify topology without changing
grid point location

Adding or deleting elements
to improve local resolution

Refinement/Coarsening

45

Mesquite provides advanced mesh
smoothing capabilities

• Mesquite is a comprehensive, stand-alone
library for mesh quality improvement with the
following capabilities
– Shape Quality Improvement
– Mesh Untangling
– Alignment with Scalar or Vector Fields
– R-type adaptivity to solution features or error

estimates

• Uses node point repositioning schemes

• Parallel to O(1000) processors

• Tested with FMDB, MOAB, NWGrid,
GRUMMP iMesh implementations

46

Swapping complements node point
movement in improving mesh quality

• Changing topology can eliminate poorly-shaped mesh
entities directly

• Service using standard interface handles error-prone
aspects of implementation
• Swapping decisions
• Topological changes to the mesh

• Swapping service functionality
 Triangular/tetrahedral edge and

face swapping
 Works on single entities, mesh

subsets, or entire mesh
 Built in and user-defined swapping

criteria provide both ease of use and flexibility
 Tested with FMDB, MOAB, and GRUMMP

47

Mesh adaptation is critical for many
applications

• Determining optimal initial mesh sizes is not possible for
complex geometry/ physics

• CFD adaptivity example impact:
– Isotropic : same accuracy as uniform with one

order of magnitude fewer elements
– Anisotropic : same accuracy as uniform with

two orders of magnitude fewer elements
• ITAPS Mesh Adapt Service

– Starts with an arbitrary initial mesh with a
solution

– Given a new mesh size field, alters the mesh
via local mesh modifications

– Supports
• Curved Boundaries
• Anisotropy
• Parallel mesh adaptation

48

Scaling studies of uniform refinement
on up to 32K processors

• Weak scaling uniform refinement

• Mesh adaptation characterized by small, but variable, work
per operation - “perfect scaling” too costly
– Can run on the large numbers of parts used in the analysis
– Will still be a small % of total solution time - the mesh adapt example

given is 0.04% of the estimated solve time
• Improvements to message passing can improve scaling

of
Parts

Initial
Mesh

Adapted
Mesh

Time (s) Scaling
Factor

2048 17M 128M 5.0 1.0

4096 34M 274M 4.8 1.05

8192 65M 520M 5.1 0.97

16384 520M 1.1B 6.1 0.82

32768 274M 2.2B 7.4 0.68

Zoltan partitioners can now access
mesh data through ITAPS interfaces

49

 Partitioning Methods
 Geometric (RCB, Space filling curves)
 Connectivity-based (ParMetis, Scotch,

Hypergraph)
 iMesh and iMeshP versions

available
 Tested and adopted by FMDB,

GRUMMP, MOAB, MeshAdapt,
accelerator and fusion scientists

50

MeshAdapt and iZoltan used to prepare
strong scaling study on 128K processors

• PHASTA CFD solver
– Implicit time integration - iterative system

solution at each time step
– Employs the partitioned mesh for system

formulation and solution
• PHASTA’s work characterized as:

– Organized and regular communication
between parts that “touch” each other

– A specific number of ALL-REDUCE
communications also required

• ITAPS Services used
– FMDB for the mesh database
– MeshAdapt for refinement up to 32K
– iZoltan to partition the mesh to 128K

• Strong scaling highlights need for
advanced partitioning algorithms

1 billion element anisotropic mesh on
Intrepid Blue Gene/P

#of
cores

Rgn imb Vtx imb Time (s) Scaling

16k 2.03% 7.13% 222.03 1

32k 1.72% 8.11% 112.43 0.987

64k 1.6% 11.18% 57.09 0.972

128k 5.49% 17.85% 31.35 0.885

51

Interface tracking is available through the
FronTier library

• Intended uses include
– Computational domains sharply

different quantitatively or qualitatively,
boundary dynamic

– Tracking the dynamic motion of
distinct bodies, or interfaces between
distinct physical regions

• Coupled with hyperbolic,
parabolic, and elliptic PDE
solvers

• Parallel to 16K processors
• DOE Applications: fluid-fluid,

fluid-structure, crystal growth,
phase transition, elastic-plastic,
and other moving interfaces

• Available and tested with the iMesh
interfaces through FMDB, MOAB,
and GRUMMP

FronTier meshed
data structure

b

ITAPS has been integrated with VisIt
as a database plug-in for visualization

• A single plug-in supports
multiple ITAPS
implementations

• Supports all entity types, set
and tag data through iMesh

• Prototype parallel service
demonstrated with iMeshP
and FMDB

• Future integration will use
VisIt’s in-situ ‘simulation’
interface for run-time vis

52

Interoperable Mesh I/O is a key new
service to broaden interoperability

• Provides access to a wide array of
scientific data through VisIt readers
– 100+ different file formats
– Instantiated into any iMesh implementation

• Supports all mesh topology and
geometries, and fields stored as dense
tags

• Demonstrated ability to instantiate data
from previously unsupported file type
and partition it via iZoltan through
iMesh

53

54

Implementing ITAPS interfaces allows use
of services on your data structures

Interface

Component
Service 3High Level

Integrated Service
Application w/

Own Data Component
Service 2

Component
Service 1

• Need to implement some ITAPS interface functions
using your data structures – BUT NOT ALL

• Most ITAPS functions reflect things you already do
with your databases; most implementation tasks are
a thin wrapper

• Compliance testing tools ensure correctness
• Can use a reference implementation at the cost of a

data copy to experiment with services

55

Interface functions needed by the
various services

ITAPS Software

57

 ITAPS Web Pages

• Provides help getting
started

• Usage strategies
• Data model description
• Access to interface

specifications,
documentation,
implementations

• Access to compatible
services software

http://www.itaps-scidac.org

58

Interface Software Access

• Links to the interface user
guides and man pages
where available

• Links to implementations
for iMesh, iGeom, iRel
– Version 1.0 compatible

software
– Links to the home pages for

more information
• Simple examples,

compliance testing tools
and build skeletons

59

Services Software Access

• Links to the services built on
the ITAPS interfaces

• Currently available
– Mesquite
– Zoltan
– Swapping
– Frontier
– VisIt Plug In

• Links to home pages for more
information

• Instructions for build and links
to supporting software

60

ITAPS Software: Best Practices

• Use C-based interface where possible, for efficiency
• Pre-allocate memory in application or re-use memory

allocated by implementation
– E.g. getting vertices adjacent to element – can use static array, or

application-native storage
• Take advantage of implementation-provided capabilities

and iMesh compliant services
– Partitioning, IO, parallel communication, (parallel) file readers

• Try different implementations: they are tuned for different
application uses – Experiment!

• Implement iMesh on top of your data structure
– Take advantage of tools that work on iMesh API

• Let us help you
– Not all best practices are easily described or self-evident

Conclusions

62

What you learned today

• A component-based approach to mesh
services and tools is both flexible and
effective

• The ITAPS interfaces provide an avenue
to leverage many existing technologies
and a path to incremental adoption

63

None of this would be possible without a
strong team of contributors

• ANL: Tim Tautges
• LLNL: Lori Diachin, Mark Miller, Kyle Chand, Martin

Isenburg
• PNNL: Harold Trease
• RPI: Mark Shephard, Ken Jansen, Eunyoung Seol,

Xiaojnan Luo, Ting Xie, Onkar Sahni
• SNL: Vitus Leung, Karen Devine
• SUNY SB: Xiaolin Li, Brian Fix, Ryan Kaufman
• UBC: Carl Ollivier-Gooch
• U Wisconsin: Jason Kraftcheck, Jane Hu

I thank all those who have contributed to the ITAPS
interface definition effort and software!

64

Contact Information

• ITAPS Web Page: http://www.itaps-
scidac.org

• ITAPS Software Page: http://
www.itaps-scidac.org/software

• Email: itaps-mgnt@llnl.gov
• Tutorial Presenter:

Lori Diachin, LLNL
diachin2@llnl.gov

65

Auspices and disclaimer

 This work performed under the auspices of the U.S. Department of Energy by
Lawrence Livermore National Laboratory under Contract DE-
AC52-07NA27344.

This document was prepared as an account of work sponsored by an agency
of the United States government. Neither the United States government nor
Lawrence Livermore National Security, LLC, nor any of their employees
makes any warranty, expressed or implied, or assumes any legal liability or
responsibility for the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or represents that its
use would not infringe privately owned rights. Reference herein to any
specific commercial product, process, or service by trade name, trademark,
manufacturer, or otherwise does not necessarily constitute or imply its
endorsement, recommendation, or favoring by the United States
government or Lawrence Livermore National Security, LLC. The views and
opinions of authors expressed herein do not necessarily state or reflect
those of the United States government or Lawrence Livermore National
Security, LLC, and shall not be used for advertising or product endorsement
purposes.

